Showing posts with label INTERNAL STRUCTURE OF EARTH. Show all posts
Showing posts with label INTERNAL STRUCTURE OF EARTH. Show all posts

Thursday, December 22, 2016

INTERNAL STRUCTURE OF EARTH

INTERNAL STRUCTURE OF EARTH

Earth's interior, like that of the other terrestrial planets, is divided into layers by their chemical or physical (rheological) properties. The outer layer is a chemically distinct silicate solid crust, which is underlain by a highly viscous solid mantle. The crust is separated from the mantle by the Mohorovičić discontinuity. The thickness of the crust varies from about km (kilometers) under the oceans to 30–50 km for the continents. The crust and the cold, rigid, top of the upper mantle are collectively known as the lithosphere, and it is of the lithosphere that the tectonic plates are composed. Beneath the lithosphere is the asthenosphere, a relatively low-viscosity layer on which the lithosphere rides. Important changes in crystal structure within the mantle occur at 410 and 660 km below the surface, spanning a transition zone that separates the upper and lower mantle. Beneath the mantle, an extremely low viscosity liquid outer core lies above a solid inner core. The Earth's inner core might rotate at a slightly higher angular velocity than the remainder of the planet, advancing by 0.1–0.5° per year. The radius of the inner core is about one fifth of that of Earth.

Earth's internal heat comes from a combination of residual heat from planetary accretion (about 20%) and heat produced through radioactive decay (80%). The major heat-producing isotopes within Earth are potassium-40, uranium-238, and thorium-232. At the center, the temperature may be up to 6,000 °C (10,830 °F), and the pressure could reach 360 GPa. Because much of the heat is provided by radioactive decay, scientists postulate that early in Earth's history, before isotopes with short half-lives were depleted, Earth's heat production was much higher. At approximately Ga, twice the present-day heat would have been produced, increasing the rates of mantle convection and plate tectonics, and allowing the production of uncommon igneous rocks such as komatiites that are rarely formed today.